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1 Introduction

Network datasets arise naturally in a number of applications, such as online social networks, biological
networks, communication networks, and transportation networks [1]. As a result, there is growing
interest in developing models for such data, and in particular—as individual networks continue to
grow in size—statistical models that accurately reflect the real-life scaling properties of such graph
sequences. One important real-life scaling property we want to capture in a network model is sparsity
(e.g., [2–8]), where the number of edges grows sub-quadratically in the number of vertices [9–11].

Many popular network models make the assumption of exchangeability in the vertices (see Lloyd
et al. [12, Sec. 7.1] for examples); i.e., the order that the vertices appear in the graph sequence
does not affect the distribution of the graph. The Aldous-Hoover theorem [13, 14] characterizes
the distribution of such vertex-exchangeable graphs, by guaranteeing the existence of a function,
often called a graphon, from which we can sample vertex-exchangeable graphs. This representation
theorem allows us to evaluate all vertex-exchangeable graphs at once; in particular, a corollary of the
Aldous-Hoover theorem is that any vertex-exchangeable graph is almost surely dense or empty (see
Orbanz and Roy [15]). This is an undesirable scaling property for modeling real-world graphs, as it
implies that the number of edges grows quadratically in the number of vertices.

Recently, the notion of edge exchangeability for graphs was introduced; here the order that edges
appear in the graph sequence—as opposed to the vertices—does not affect the distribution of the
graph, and it was proven that there exist sparse, edge-exchangeable graphs [16, 17]. Thus, edge
exchangeability provides a promising alternative to vertex exchangeability for developing hierarchical
models for network and relational data, as, crucially, it admits properties of sparsity and power
law behavior observed in many real-world networks. As in the vertex-exchangeable case with the
Aldous-Hoover theorem, it is desirable to to characterize all edge-exchangeable graphs at once via a
de-Finetti style representation.

In this paper, we provide a paintbox representation for edge-exchangeable graphs, which we call
the graph paintbox, and show that it characterizes the distribution of edge-exchangeable graphs.
The paintbox representation thus provides a way to analyze all edge-exchangeable graphs, and
in particular, study desirable properties such as sparsity and power laws. In addition, we discuss
a particular class of edge-exchangeable graphs examined by Cai, Campbell, and Broderick [16],
called graph frequency models, and provide a characterization for an important class of graph
frequency models via a function called the exchangeable vertex probability function (EVPF), which
is reminiscent of the exchangeable partition probability function (EPPF) for random partitions [18].
In particular, the EVPF is convenient for practical inference in edge-exchangeable graph models,
analogous to the role of the EPPF for performing practical inference Bayesian nonparametric models
for clustering, such as with the Dirichlet process mixture [19] and more generally in other clustering
models [20, 21].
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Figure 1: Vertex vs edge exchangeability. Top row: A vertex-exchangeable sequence, where a new
vertex joins at each step, instantiating any edges with existing vertices. The two rightmost graphs have
the same probability under vertex exchangeability. Bottom row: An edge-exchangeable sequence,
where an edge joins at each step, instantiating vertices along the way. The two rightmost graphs have
the same probability under edge exchangeability.

In what follows, we provide a high-level overview of our results. The detailed derivations and proofs
for a generalized treatment (including results pertaining to hypergraphs, where edges connect to a
finite number of vertices with finite multiplicity) can be found in Campbell, Cai, and Broderick [22].

2 Edge exchangeability

In order to discuss edge exchangeability in graphs, we need to first introduce the notion of a graph
sequence. Let (Gn)n∈N := G1, G2, . . . be a sequence of graphs where each graph Gn = (Vn, En)
consists of a (finite) set of vertices Vn and a (finite) multiset of edges En. Each edge connects two
distinct vertices in Vn. We assume the sequence is both random and projective—or growing—so that
Vn ⊆ Vn+1 and En ⊆ En+1 almost surely.

Figure 1 shows two different ways of representing such a graph sequence. The traditional approach is
to label the vertices, and express each graph in the sequence as the collection of edges represented
by pairs of vertices. For example, in the top row of Figure 1, the graph sequence is constructed by
sequentially adding vertex 1 with no edge, then adding vertex 2 with the edge {1, 2}, then vertex
3 with no edge, and finally vertex 4 with edges {1, 4}, {2, 4}, and {3, 4}. We can represent the
final graph as its collection of edges: G4 = {{1, 2}, {1, 4}, {2, 4}, {3, 4}}. This representation
allows us to specify vertex exchangeability as the invariance of the distribution of G4 to permutations
of the vertex labels. Hence, as shown in the upper right two graphs in Figure 1, the graphs G4

and G̃4 = {{3, 2}, {1, 2}, {1, 3}, {1, 4}} have the same probability under a vertex-exchangeable
distribution, as the vertex labels were reordered by the permutation (134)(2) (in cycle notation).

An alternative approach, to which we adhere, is to label the edges, and express each graph in the
sequence as the collection of vertices represented by the edge labels to which they connect. For
example, in the bottom row of Figure 1, the graph sequence is constructed by the following sequential
procedure. First, edge 1 is introduced between two new vertices, so G1 = {{1}, {1}}. Next, edge
2 connects to one old and one new vertex, so G2 = {{1, 2}, {2}, {1}}. Then edge 3 connects to
the same vertices as edge 1, so G3 = {{1, 3, 2}, {2}, {1, 3}}. Finally, edge 4 introduces one new
vertex and connects to the vertex only connected to edge 2, so G4 = {{1, 3, 2}, {2, 4}, {1, 3}, {4}}.
This representation—which we call a vertex allocation, as it allocates labeled edges amongst the
vertices—allows us to specify edge exchangeability as the invariance of the distribution of G4 to
permutations of the edge labels. Hence, as shown in the lower right two graphs in Figure 1, the graphs
G4 and G̃4 = {{2, 3, 4}, {3, 1}, {2, 4}, {1}} have the same probability under an edge-exchangeable
distribution, as the edge labels were reordered by the permutation (14)(23) (in cycle notation).

Definition 2.1. Consider the random graph sequence (Gn)n represented by vertex allocations. The
sequence (Gn)n is infinitely edge-exchangeable if for every n ∈ N and for every permutation π of
{1, . . . , n}, Gn

d
= G̃n, where G̃n is the same vertex allocation as Gn with indices permuted by π.
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Figure 2: Left: An example graph paintbox and uniform random draws from it. Right: The resulting
edge-exchangeable graph. Vertices are colored according to the paintbox subsets, and edges are
labeled according to the indices of Vn. Gray vertices are dust vertices that only occur in a single edge.

3 The graph paintbox

We now present the paintbox representation that characterizes the distribution of edge-exchangeable
graphs, referred to as the graph paintbox. In particular, any edge-exchangeable graph has essentially
the same representation of its distribution. We first generate a random collection of open subsets of
(0, 1), (Ck)k, C ′

1, and C ′
2, and independently sample an i.i.d. sequence (Vn)n of uniform random

variables on (0, 1). Each Vn corresponds to an edge in the graph sequence, which connects to exactly
two vertices determined by the subsets in which it falls. The subsets (Ck)k represent regular vertices,
and C ′

1, C
′
2 represent dust vertices. Regular vertices can connect to any number of edges, whereas

dust vertices can connect only to a single edge in the entire infinite graph sequence. If Vn ∈ Ck

and Vn ∈ Cj for j 6= k, then edge n is between two regular vertices. If Vn ∈ Ck and Vn ∈ C ′
1,

then edge n is between a regular vertex and a dust vertex that only ever connects to edge n. Finally,
if Vn ∈ C ′

2, edge n connects to 2 dust vertices that both only ever connect to edge n. We call an
edge-exchangeable graph regular if there are no dust vertices, or equivalently, if C ′

1 = C ′
2 = ∅.

Figure 2 illustrates an example graph paintbox, where the subsets C1, C2, C3 are given by the yellow,
red, and blue subsets of (0, 1), respectively, and the gray subsets C ′

1, C
′
2 represent dust vertices. On

the right is the resulting edge-exchangeable graph after making 6 i.i.d. uniform draws of Vn given the
paintbox. The resulting vertex allocation is G6 = {{3, 6}, {1, 2, 5}, {3, 6}, {1}, {2}, {5}, {4}, {4}}.
Here the gray vertices are the dust vertices, which only ever connect to a single edge in the infinite
graph sequence, and the dust vertices allow for structure such as isolated edges and stars in the graph.
Note that Definition 3.1 could be modified to allow for both loops (edges that connect to only one
vertex) and empty edges (those that connect to no vertices), but for clarity we only present the case
where edges must connect to exactly two vertices.

Definition 3.1. An infinitely edge-exchangeable graph sequence (Gn)n has a graph paintbox if there
exists a random sequence (Ck)k and random sets C ′

1, C
′
2 that are all Lebesgue-measurable open

subsets of (0, 1) such that

• the sets C ′
2 and

⋃
k Ck ∪ C ′

1 are disjoint, and

• any V ∈ (0, 1) is an element of either C ′
2 or exactly two sets from (Ck)k and C ′

1,

where the sequence (Gn)n is constructed by

• sampling (Vn)n
i.i.d.∼ Unif(0, 1),

• setting Ik = {n : Vn ∈ Ck} for each k ∈ N,

• setting I ′1 = {{n} : Vn ∈ C ′
1} and I ′2 = {{n}, {n} : Vn ∈ C ′

2}, and

• setting Gn for each n ∈ N to the collection (Ik)k, I
′
1, I

′
2 with indices above n removed.

The graph paintbox described in Definition 3.1 can also be viewed as a special case of the feature
paintbox [23], in which the number of subsets a point Vn ∈ (0, 1) can be an element of is constrained
to be exactly 2; in this case, features correspond to vertices. Our treatment of the paintbox additionally
includes the characterization of dust vertices.

Theorem 3.2. A random graph (Gn)n is infinitely edge-exchangeable iff it has a graph paintbox.
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Note that the graph paintbox representation can be extended to more general hypergraphs, where
edges connect a finite number of vertices (potentially with multiplicity) via recent work on the theory
of trait allocations [22].

4 Frequency models and probability functions

In this section, we consider a particular construction of an edge-exchangeable graph, which is an
important special case of the general class of graph frequency models considered by Cai, Campbell,
and Broderick [16] (we refer to this special case with the same name for brevity). Graph frequency
models are promising not only because they can produce sparse graphs [16], but also because they are
particularly amenable to approximate posterior inference algorithms, such as variational inference,
Hamiltonian Monte Carlo, and Gibbs sampling. We show the equivalence of random graph sequences
having a frequency model with those having a marginal distribution that can be expressed as an
exchangeable vertex probability function (EVPF), the graph analog of the exchangeable partition
probability function (EPPF) [18] and the exchangeable feature probability function (EFPF) [23].
Similar to how the EPPF has led to practical inference algorithms for Bayesian clustering, and how
the EFPF has done the same for Bayesian feature learning, the equivalent characterization of the
EVPF with graph frequency models provided in Theorem 4.2 implies a class of edge-exchangeable
graph models that have practical posterior inference algorithms.

The particular graph frequency model we consider is as follows. Suppose we have a countably infinite
collection of weights (wi)i∈N, with

∑
j wj < ∞ and wj ∈ (0, 1), where each index i ∈ N is a

“popularity” associated with a potential vertex in the graph. To sample a sequence of graphs given
these weights (wi)i, at each step n, edge n forms between vertex j and k, j 6= k, with probability
proportional to wjwk.

Rather than specifying the distribution of a graph sequence conditioned on latent parameters (such
as the weights (wi)i), we can specify its marginal distribution. Suppose at step n, we let Ḡn

be the multiset of degrees of the vertices in Gn, i.e., a multiset containing the number of edges
each vertex participates in. Using again the bottom row of Figure 1 as an example, since G4 =
{{1, 3, 2}, {2, 4}, {1, 3}, {4}}, we have that Ḡn = {3, 2, 2, 1}. We also let κ(Gn) be the number
of unique orderings of the sets in Gn – in the previous example, κ(G4) = 4! = 24 since there are
4 unique sets in the vertex allocation G4. As another example, if Gn = {{1, 2}, {1, 2}, {3}, {3}},
there are κ(Gn) = 4!/(2! · 2!) = 6 unique orderings. If the distribution of Gn depends only on n,
Ḡn, and κ(Gn), as specified in Definition 4.1, we say Gn has an exchangeable vertex probability
function (EVPF).
Definition 4.1. A random graph Gn has a exchangeable vertex probability function if it admits the
representation Pr(Gn) = κ(Gn)p(n, Ḡn).

Intuitively, the EVPF says that the probability of the graph only depends on the degrees of the
vertices. For an arbitrary edge-exchangeable graph, there may not exist an EVPF; however, any
edge-exchangeable graph that has a graph frequency model also has an EVPF, and vice versa, as
shown by Theorem 4.2.
Theorem 4.2. A regular graph sequence (Gn)n has a frequency model iff it has an EVPF.

5 Conclusions and future directions

We have presented a paintbox representation for all edge-exchangeable graphs, and the correspon-
dence between exchangeable vertex probability functions and graph frequency models. The paintbox
is a powerful representation that can be directly analyzed to characterize properties of all edge-
exchangeable graphs. We are currently investigating the use of these results to characterize edge-
exchangeable graphs with sparse power laws, i.e., graphs in which the number of edges grows with
the number of vertices with an exponent strictly between 1 and 2. We are also investigating other
types of power laws involving, for example, the number of triangles or the degree distribution of the
graph. Finally, we are further exploring the connection between the EVPF and efficient algorithms
for posterior inference in edge-exchangeable graph frequency models.
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